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ABSTRACT 
 This paper presents an improved low latency systolic structure for binary multiplication over Galois Field based 
on irreducible all-one polynomial. The systolic design is a special type of hardware solution because of its ability of 
pipelining and local connectivity. A cut-set retiming technique is proposed to reduce the duration of the critical-path, 
to one XOR gate delay in this design. Further the systolic structure can be decomposed into two or more parallel 
systolic branches, which have the same input operand and share the same input operand registers. Using the 
improved finite field multipliers, Reed Solomon encoder which uses secure authentication in cryptography 
applications, is designed. From the implemented hardware synthesis results, the proposed design provides 
significantly less area and power-delay complexities over the existing designs. 
 
Index Terms—Finite field, all–one polynomial, retiming, memory sharing technique, reed solomon encoder.  
 
 
 
I. INTRODUCTION 

Finite field multipliers over GF(2m) have wide 
applications in elliptic curve cryptography (ECC) and 
error control coding systems [1], [2]. Efficient hardware 
design for polynomial-based multiplication is therefore 
important for real-time applications [3]–[5]. All-one 
polynomial (AOP) is one of the classes of polynomials 
considered suitable to be used as irreducible polynomial 
for efficient implementation of finite field 
multiplication. Multipliers for the AOP-based binary 
fields are simple and regular, and therefore, a number of 
works have been explored on its efficient realization 
[6]–[17]. Irreducible AOPs are very often not preferred 
in cryptosystems for security reasons, and one has to 
make careful choice of the field order to use irreducible 
AOPs for cryptographic applications [1], [9]. The AOP-
based multipliers can be used for the nearly AOP 
(NAOP) which could be used for efficient realization of 
ECC systems [18]. In [13], a bit-parallel AOP-based 
systolic multiplier has been suggested by Lee et al. In a 
recent paper [15], a low-complexity bit-parallel systolic 
Montgomery multiplier has been suggested. Very 
recently [16], an efficient digit-serial systolic 

Montgomery multiplier for AOP-based binary extension 
field is presented. The systolic structures for field 
multiplication have two major issues. First, the registers 
in the systolic structures usually consume large area and 
power. Second, the systolic structures usually have a 
latency of nearly m cycles, which is very often 
undesired for real-time applications. Therefore, in this 
paper, we have presented a novel register- sharing 
technique to reduce the register requirement in the 
systolic structure. Besides, we have proposed a novel 
cut-set retiming approach to reduce the clock-period. 

 
 
AOP-based fields could also be used for efficient 

implementation of Reed-Solomon encoders [19].  Reed-
Solomon coding is one of the most important schemes 
for error detection and correction. The Reed-Solomon 
codes are called after their discoverers and widely used 
in digital communication systems. They are constructed 
and decoded using finite field arithmetic referred as 
Galois Fields (GF). Thus a real time programmable 
Reed Solomon coding processor is implemented. The 
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proposed structure is found to involve significantly less 
area-time-power complexity.    
        
II.  ALGORITHM 

Let f(x) = x m  +  xm - 1  + … + x + 1 be an 
irreducible AOP of degree m over GF (2). As a 

requirement of irreducible AOP for GF (2m), (m + 1) is 
prime and 2 is the primitive modulo (m + 1). The set 

{αm - 1, αm - 2,.., α, 1} forms the canonical basis, 
such that an element X in the binary field can be 
given by  
 

X= Xm-1 α m-1 + X m-2 α m-2 + ….+ X1 α + 
X0 

(1) 

 
where Xi ε GF(2) for  i = m - 1,…., 
2, 1, 0 

Since α is a root of f(x), we can have f (α) = 0, and 
 

f(α) + α f(α) = (αm + αm - 1 +…..+ α + 
1) 

                           + α (αm + αm - 1 

+…..+ α + 1) 

                         = αm – 1 + 1 = 0 

 
 

(2) 

 
Therefore, we have    
 

αm-1 = 1 (3) 

This property of AOP [17] is used to reduce the 
complexity of field multiplications as discussed in the 
following. 

Any element X in GF(2m) given by (1) in polynomial 
basis representation can be represented as, X = x0 + 

x1α + ….. + xmαm, where xi ϵ GF(2), and {αm , αm-1  

,....,α ,1 } is the extended polynomial basis[17]. 

Similarly, if A, B, C ϵ GF(2m), they  can  be  
represented  by  the  extended polynomial basis as 

 
             m                            m                             
m 

A = ∑ a j  α j  ,   B = ∑ b j  α j ,    C =  ∑ c j  α j 
                j = 0                       j = 0                         
j = 0 
 

 
(4) 

 
where a j,  b j, and  c j ϵ GF(2), for 0 ≤  j ≤ m - 1, and am = 
0, bm = 0  
 
 
and cm = 0. 
  

If C is the product of elements A and B, then we have 
 

C = A. B mod f(α) (5) 
 
This can be decomposed to a form 
 
                         M 

C = ∑ b i (α i  . A mod f(α )  ) 
                         i = 0 

 
(6) 

 
Equation (6) can be expressed as a finite field 
accumulation 
 

  M 
C = ∑  Xi 
     i = 0 

 
(7) 

 
where Xi is given by 
 

Xi= bi. Ai (8a) 
 
for A0 = A , and Ai = [ αi  . A mod f(α) ] and using (3) 
Ai can be obtained from A  as 
 
Ai = a m - 1 α m + a m – i - 1 α m - 1 + ….. + a m – i + 2 

α  
            + a m – i + 1 

 
(8b) 

 
Such that Ai + 1 can be obtained from Ai recursively as 
 

Ai + 1 = α. Ai mod f (α) (9) 
 

The partial product generation and modular reduction 
are performed according to (8) and (9) respectively. The 
additions of the reduced polynomials are performed 
according to (7). 

Equation (9) can be expressed as  
 

Ai + 1 = [ a0 i. α + a1 i . α 2 + … + am i . α m+1] 
mod f(α)    

(10a) 

where 
M 

Ai  =  ∑ a j
i
  α j 

j=0 

 
(10b) 

 
 Substituting (3) into (10a), Ai+1 can be obtained as 
 

Ai + 1 = a0 i+1 + a1 i+1 . α + … + am i+1. α m (11a) 
 
where 
               a0

i+1 = ai m (11b) 

aj
i + 1 = aij – 1,   for   1 ≤ j ≥ m – 1 (11c) 

 
 It is also possible to extend (11) further to obtain Ai + l 

directly from Ai for 1 ≤ l  ≥ m, such that  
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                 ai

m – j + j + 1,   for 0 ≤ j ≥ l – 1 
aj

i + 1  =                                                     
                 ai

j-i,               otherwise 

 
(12) 

 
We have used the above equations to derive the 

proposed linear systolic structure based on a novel cut-
set retiming strategy and register-sharing technique.  

 
III. BASIC SYSTOLIC STRUCTURE 
 For systolic implementation of multiplication over 
GF (2m), the operations of (7), (8) and (11) can be 
performed recursively. Each recursion is composed of 
three steps, i.e., modular reduction of (11), bit-
multiplication of (8), and bit-addition of (7). Equations 
of (7), (8) and (11) can be represented by the SFG 
(shown in Fig. 1) consisting of m modular reduction 
nodes R(i) and m addition nodes A(i) for  1 ≤ i ≥ m, and 
(m + 1) multiplication nodes M(i) for 1 ≤ i ≥ m+1. 
 

         
                           Fig. 1. Signal flow graph 
  
 Node R(i) perform the modular reduction of degree 
by one according to (11). Node M(i) performs an AND 
operation of a bit of operand B with a reduced form of 
operand A , according to (8). Node A(i) performs the 
bit-addition operation according to (7). 
 
IV.  RETIMING TECHNIQUE 
  Generally, we can introduce a delay between the 
reduction node and its corresponding bit-multiplication 
and bit-addition nodes, such that the critical-path is not 
larger than (TA + TX ),where the TA and TX refer the 
propagation delay of AND gate and XOR gate, 
respectively. In this section, however, we introduce a 
novel cut-set retiming to reduce the critical-path of a PE 
to TX. It is observed that the node R(i) performs only the 
bit-shift operation according to (11), and therefore it 
does not involve any time consumption.  

   
        
       Fig. 2. The formation of PE of the retimed SFG 

 
 Therefore, we introduce a critical-path which is not 
larger than TX. The basic design of a systolic multiplier, 
can be observed that the cut-set retiming allows to 
perform a reduction operations, bit-addition, and bit-
multiplication concurrently, so that the critical- path is 
reduced to max{ TA, TM, TR }, where TA, TM and TR are, 
respectively, the computation times of the bit-addition 
nodes, bit-multiplication nodes, and reduction nodes. 
 
 The basic design of systolic multiplier thus derived is 
shown in Fig. 3. It consists of (m+2) PEs, and the 
functions of the PEs are shown in Fig. 3. During each 
cycle period, the regular PE not only performs the 
modular reduction operation according to (11), but also 
performs the bit-multiplication and bit-addition 
operations concurrently. 
 
 The regular PE consists of three basic cells, e.g., the 
bit-shift cell (BSC), the AND cell, and the XOR cell. 
The AND cell, and the XOR cell correspond to the node 
M(i), and node A(i) of the SFG of Fig. 1, respectively. 
  

 
                       Fig. 3. Basic systolic design 
 
 

               
Fig. 4. Structure of PEs. (a) Internal structure of a 
regular PE. (b) Internal structure of PE[0]. (c) An 
example of AND cell for m=4. (d) Structure of the AC. 
(e) Structure of  BSC where m=4. (f) Alternate structure 
of a regular PE. (g) Alternate structure of PE[0]. 
  
 The structure of PE[1] consists of an AND cell and a 
BSC. Each XOR cells and AND cells in the PE consists 
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of (m+1) number of gates working in parallel. The 
PE[m+1] of the systolic structure consists of only an 
XOR cell, as shown in Fig. 4(d), which performs bit-by-
bit XOR operations of its pair of m-bit inputs. The BSC 
in the PE performs the bit-shift operation according to 
(11). Therefore, we can change the circuit-designs of 
Fig. 4(a) and (b) into the form of Fig. 4(f) and (g), 
respectively. Besides, according to (11), the operation of 
node R(i) does not involve any area and time-
consumption. Therefore, the minimum duration of 
clock-period of a regular PE amounts to max{ TA, Tx }. 
The proposed systolic design yields the first output of 
desired product (m+2) cycles after the first input is fed 
to the structure, while the successive outputs are 
available in each cycle. 
 
V. MEMORY SHARING TECHNIQUE 
 For irreducible AOP, m is an even number. 
Therefore, let l and P  be two integers such that (m + 1) 
= lP + r, where is an integer in the range 0 ≤ r ≥ l. For 
example, if we choose P =  m / 2, then l = 2, r = 1, (7) 
can be rewritten as 
 

m/ 2              m/ 2 
C  = ∑   Xi   +    ∑      Xi 
    i = 0            i=m/2+1 

 
(13) 

 
 As shown in (13), one of the sum contains [(m/2)+1] 
partial products while the other has m/2 partial products. 
Based on (13), the systolic structure of Fig. 4 could be 
modified to a form shown in Fig. 5, which consists of 
two systolic branches. The upper branch consists of 
[(m/2)+2]  PEs and the lower branch consists of 
[(m/2)+1] PEs and a delay cell. Besides, an addition-cell 
(AC) is required to perform the final addition of the 
outputs of the two systolic arrays. The structure has the 
PEs of the same complexity as those in Fig. 3, but the 
latency of structure is only [(m/2)+3] cycles. 
 

 
Fig. 4. Low latency systolic structure 
 
                  

 
Fig. 5. Low latency register sharing systolic structure 

 

 It is observed that the two systolic branches in Fig. 5 
share the same input operand A, and the PEs in both the 
branches perform the same operation except the last PE 
in each of the branches. Therefore, we present an 
efficient structure using the register-sharing technique 
as shown in Fig. 6, where the structure consists of 
[(m/2)+2] PEs and an AC. It combines two regular PEs 
of Fig.5(a) together by sharing one input-operand-
transfer. Thus, the whole structure requires only [2.5m2 

+ 6.5m + 4] bit-registers, while the structure of Fig. 4 
requires [3m2 + 5m + 2]  bit-registers. Besides, the 
latency of structure is [(m/2) + 3] cycles, while the 
duration of cycle period of a regular PE is still TX. 

VI. IMPROVED LOW LATENCY SYSTOLIC STRUCTURE 
 We may further decompose the design in Fig. 6. For 
example, if we choose P = m/4, then l = 2, r = 1, (7) can 
be rewritten as 
 

m/4-1         m/2-1       3m/4-1        m 
C  = ∑   Xi   +  ∑    Xi  +  ∑   Xi   +  ∑    Xi 

      i = 0            i=m/4         i=m/2        i=3m/4 

 
(14) 

 
 

 
             

Fig. 7. Improved systolic structure 
 

 Following the same approach as the one used to 
derive the structure of Fig. 5, we can have the design in 
Fig. 7, where it consists of four systolic branches. 
Similarly, following the approach presented to derive 
the structure of Fig. 6 from Fig. 5, we may have the 
design shown in Fig. 7. The design of Fig. 7 requires 
only [(m/4) + 4] cycles of latency. When m is a large 
number, l and P can be chosen as to obtain optimal 
realization. 
 

l = P = [m + 1] (15) 
 

VII. REED SOLOMON ENCODER DESIGN 
 Reed-Solomon codes have a widespread use to 
provide error protection especially for burst errors. This 
feature has been an important factor in adopting RS 
codes in many practical applications such as wireless 
communication system, cable modem, computer 
memory.  
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Fig. 8. Reed Solomon encoder 

 This thesis proposes an area efficient, low energy, 
high speed architecture for a Reed-Solomon 
RS(255,239) decoder based on Decomposed 
Inversionless Berlekamp-Massey Algorithm, where the 
error locator and evaluator polynomial can be computed 
serially. In the proposed architecture, a new scheduling 
of t finite field multipliers is used to calculate the error 
locator and evaluator polynomials to achieve a good 
balance between area, latency, and throughput. This 
architecture is tested in two different decoders. The first 
one is a two parallel decoder, as two parallel syndrome 
and two parallel Chien search are used. The second one 
is a serial decoder, as serial syndrome and Chien search 
are used. In our architectures we have investigated 
hardware area, throughput, and energy per symbol and 
we did a good optimization between the latency, 
throughput, and energy per symbol while maintaining a 
small area. 
 
VIII. AREA AND TIME COMPLEXITY 
 The proposed structure (see Fig. 6) requires [(m/2) + 
2] PEs and one AC. Each of the regular PEs consists of 
2(m+ 1) XOR gates in a pair of XOR cells and 2(m+ 1) 
AND gates in a pair of AND cells. The latency of the 
design is [(m/2)+ 3] cycles, where the duration of the 
clock-period is TX. The structure of Fig. 7 requires 
nearly the same gate-counts as that of Fig. 6. But its 
latency is [(m/4)+ 4] cycles. The number of gates, 
latency and critical-path of the proposed designs are 
listed in Table I. 

TABLE I 
AREA AND TIME COMPLEXITIES 

Design Registers Latency Critical 
path 

Basic 
systolic 
structure 

 
2(m + 1)2 

 
m + 2 

 
TA + TF 

Low 
latency 
register 
sharing 

structure 

 
(5 / 2 x m2) + (13 

/ 2 x m) + 4 

 
m / 2 + 3 

 
TX 

Improved 
low latency 

systolic 
structure 

 
(5 / 2 x m2) + (1 / 

2 x m) + 7 

 
m / 4 + 4 

 
TX 

 
 It can be seen that the proposed design outperforms 
the existing designs. Although slightly more registers 
than that in [11] are used, proposed design requires 
shorter latency and lower critical-path than the other as 
well as the MUX gates. Besides, as shown in Fig. 7, the 
proposed design can be extended further to obtain a 
more efficient design for high-speed implementation, 
especially when m is a large number. 
 
 The proposed design has been coded in VHDL and 
synthesized by Synopsys Design Compiler using TSMC 
90-nm library for m = 20 along with the bit-parallel 
systolic design of [15] and digit-serial systolic structure 
of [16]. The average computation time (ACT), area and 
power consumption (at 100 MHz frequency) thus 
obtained. The proposed design has at least 28.5% less 
area-delay product (ADP) and 28.2% lower power-
delay product (PDP) compared to the existing ones. 

 
IX. CONCLUSION 
 An improved efficient systolic design for the 
multiplication over GF(2m) based on irreducible AOP 
and Reed Solomon application are proposed. By novel 
cut-set retiming we have been able to reduce the critical 
path to one XOR gate delay and by sharing of registers 
for the input-operands in the PEs, we have derived a 
low-latency bit-parallel systolic multiplier. Compared 
with the existing systolic structures for bit-parallel and 
bit-serial realization of multiplication over GF(2m), the 
proposed one is found to involve less area, shorter 
critical-path and lower latency. From ASIC and FPGA 
synthesis results we find that the proposed design 
involves significantly less ADP and PDP than the 
existing designs. Besides, our proposed design can be 
extended to further reduce the latency. 
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